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Let a mviné?averaqe interpolation formula for equally spaced data, exact

for the degree r, have a basic function x.;e?c“‘" of finite support with

2 2

lr‘") piecewise continuous. Such a formula is called "smoothest“ when the
integral of the square of J(vf:) over the support of 1. is smallest. If m,
r, and the support of I are given, either there is no such formula or there
is a unique smoothest formula, for which L 1is a piecewise polynomial of
degree at least r and at most max(r, 2m - 1), uniquely characterized by
certain conditions on the location of its knots and the jumps occurring
there. A similar result is obtained if consideration is limited to formulas

that preserve (i.e., d not smooth) the given data.

AMS (MOS) Subject Clasgifications: 65D0S, 65D07

Key Words: Interpolation, Splines, Piecewise polynomials

Work Unit Number 3 (Numerical Analysis and Computer Science)
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SIGNIFICANCE AND EXPLANATION

In local moving-average interpolation of equally spaced data, each
interpolated value is calculated as a weighted average of a few given
>r ‘inates situated near the ordinate that is being approximated. The weight
applied Jepends only on the distance between the argument of the ordinate to
which the weight is applied and the argument of the interpolated value. An
example is a procedure that was often used in the construction of mathematical
tables before computers became available. Every fifth or tenth value was
calculated from a series expansion, and the intermediate values were obtained
by local Newton-lLagrange interpolation. This amounts to fitting a piecewise
polynomial function. The piecewise curve so derived had "corners,” but the
discontinuities in the first derivative were too small to be of any importance
when a smooth mathematical function was being interpolated.

In the nineteenth century British actuaries noted that the “"corners” in
the curve of interpolated values were often objectionable when empirical data
were being interpolated, and they published a number of local interpolation
formulas in which piecewise polynomials of higher degree were fitted, and the
additional degrees of freedom so obtained were utilized to secure smooth
junction of adjoining polynomial arcs. In 1946 Schoenberg showed that a local
moving~average interpolation formula is fully characterized by a certain
function of finite support having a bell-shaped graph, similar in appearance
to a probability distribution, except that it usually assumes some negative
values in the tails. This he called the basic function of the interpolation
formula. In 1954 the present authors published a paper in which Schwartz
distributions and Schoenberg's basic-function concept were used to develop a
general theory of smooth-junction local interpolation formulas.

If we fix the support of the basic function, the degree (of polynomials)
for which the formula is to be exact, and the order of derivatives to be used
in judging smoothness, it is shown in the present paper that there is then a
unique interpolation formula of the class so defined that is, in a certain
sense, smoothest. Two cases are oconsidered: that in which the curve of
interpolated values is required to pass exactly through the given data points,
and the more general case in which greater smoothness is obtained by dropping
chis requirement.
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SMOOTHEST LOCAL INTERPOLATION FORMULAS FOR EQUALLY SPACED DA‘I‘A'

-

T, No E, Greville and Hubert Vanqhm‘

1. INTRODUCTION. Schoenberg pointed out in 1946 [7) that a large class

of local interpolation formulas for equally spaced data can be expressed in

the form

i ve= | Lix=-Vy
. Vi =0®

v’ (1.1)

where Y, denotes a given ordinate, Yy is an interpolated value, and L(x)

is a given function called by Schoenberg the basic function of the interpola-

tion formula. This class includes the numerous formulas of so-called “oscula-
tory interpolation” published by actuarial writers (for additional references
see [3]). Por the latter formulas L is typically a piecewise polynomial

1

function of finite support belonging to continuity class C or cz.

. Also included is what may be called moving Newton-Lagrange interpolation,

often used, before computers became available, in the preparation of tables of

mathematical functions. An example would be the case in which the function

'-’<l '.'
{‘..J}-.-O L

f 1is interpolated in (Vh, (V + 1)h), V being any integer, by means of the
cubic p uniquely determined by the four conditions

i p(x) = £(x) (x = (Vv + j)hl j = -1,0,1,2) .

>

-
-

’A 6-page synopsis of results, without proofs, appeared in Approximation
Theory III (E. W. Cheney, ed.), Academic Press, New York, 1980.
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In this example L is a continuous piecewise cubic with support in (-2,2),
whose first derivative is discontinuous at x = -2,-1,0,1,2 (see Pig. 1).
These discontinuities did not give rise to any problems in interpolating
smooth mathematical functions, but are undesirable if one is interpolating
empirical data.

Formula (1.1) is called reproducing when L is such that v, " ¥, for
every integer V, whatever may be the values of the quantities Yy It is
clear that (1.1) is reproducing if and only if

L(v) =6 (Ve eeey=1,0,1,000) o (1.2)

where 60 is a Kronecker symbol. In practice an interpolation formula that

v
is not reproducing smoothes as well as interpolates, since each given ordinate
Y, is, in general, replaced by an adjusted value vy* (Whether the adjust-
ment does, in fact, actually increase the smoothness of the data depends on a

judicious choice of L; see [7]).)

Figure 1 shows the graphs of three typical basic functions. Note that
Karup's formula and the Newton-Lagrange central third-difference formula are
reproducing, while Jenkins' "modified" third-difference formula is not. On
the other hand, note that the Newtonian graph has corners, while the others &

not.

Formula (1.1) is called exact for the degree r when L 1is such that

the formula gives exact values whenever it is used to interpolate a polynomial
of degree r or less. In other words, using “r to denote the class of
polynomials of degree r or less, L is such that, for every p @ 'r'

Y, * p(v) for all integers V implies vy = P(x) for all real x.
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Figure 1

In the case of moving Newton-Lagrange interpolation, r is merely the

:I degree of the polynomial arcs employed. For the actuarial fomul-as, r |is
* less than the degree of the piecewise polynomial function L, the "degrees of
1 freedom” thus gained being utilized to increase the order of continuity of
4 L. The latter is, of course, also the order of continuity of the composite
C interpolating function, for if L @ ™ ', then it is clear from (1.1) that
{ . v e Cm-1 .

when L 1is discontinuous {(as occurs, for example, in the case of
symmetrical moving Newton-Lagrange interpolation of even degree), the
definition of exactness for the degree r requires interpretation. In such a

case, it must be assumed that L, though discontinuous, is nevertheless such

o L




1 f that, for every p @ 'r'

g(x) = ] Lix = vip(v)
A ] Ve ot

has only removable discontinuities, and they are removed by taking

#(x) = g(x ¢+ 0) = g(x - 0) .

i 2. MINIMIZED-DERIVATIVE PORMULAS. Let I = (a,8) be a finite open

.4‘ interval on the real line, and let rn._ denote the set of interpolation

formulas of the form (1.1) that are exact for the degree r, and have & basic

function L @ O~ ' with its support contained in I and with r®)

piecewise continuous. Also let FI’P denote the subset of F, _ consisting

P 5

of reproducing formulas. It follows from (1.2) that FItP is empty unless

0 @ I. By a piecewise continuwous function we mean one having only jump

discontinuities and at most a finite set of these.

In each of the classes 'Irn or ?*I':g we would like to find that

formula which is in some sense smoothest. We shall judge smoothness by the

clogseness to zero of the mth derivative of the interpolating function Vo

Now, m-fold differentiation of (1.1) gives

vim = T n®x - vy, (2.1)
Vaaw

almost everyvhere., As we have some latitude in the choice of the basic

function L, but none as regards the given ordinates Yy (2.,1) suggests

that the values of v,("“) will be closer to zero than would otherwise be the

case, if L 1is chosen so that the values of L(") are, in some sense, as

close to zero as possible. Accordingly, we shall call a given formula of one




of the classes F, _ or r§:£ a minimized-derivative formula (mdf) of its

: class if the quantity

-«
Jeaf ™ (x))2a (2.2)
v

! assumes for the given formula its minimum value for the class in question.

The thought leading to the definition of mdf can be made more precise in

- 3 the following manner. let a bs & given real number. Then, if M denotes

(a-8,a-a4+1), (2.1) gives |

the maximum value of [y,| for Vv fn

-
i1 em I ™ -
Vst

for every x in (a,a + 1). Consequently,

- | ) 8
i [ v™iae en [ ™ (x))ax . (2.3)
a+t - a

. 1f
-§
y=8 -a

denotes the width of the interval 1, we have, by Schwarz' inequality,

g (m) V.
[ ™ atlax ¢ un 72,

a

where J 1is given by (2.2). Thus, (2.3) gives

' 1
[ e iae ¢ moun 72,
o
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In other words, we have shown that, for & given M, by ainimizing J we
minimize & certain upper bound to the integral over a unit interval of the
absolute value of v,“”.

Minimized-derivative interpolation formulas were previously defined by us
in (3], and a few examples were given, but no general theory was developed.

In this paper we shall show that the class Prem 18 empty for
U< +1, is empty or contains a single formuls (of moving Newton-Lagrange
interpolation) when u = r + 1, and is infinite wvhen U > 1 ¢ 1, In the
latter case, we shall show that there is a unique mdf, and shall characterice
this formula in a way that leads to an algorithm for its dstermination in any
particular case.

It was previously noted that the class PItE is empty unless the open
interval I contains the origin. When this condition is satisfied, we shall

find that r‘i" is i1dentical to P

™ wvhen the number of integers contained

Irm
in I does not exceed r + 1, This implies, of course, that
r+1<uB<r+2, but the converse is not true.

when the number of integers contained {n I exceeds r + 1 (and 0 s
among them), FIfP is a proper subset of Pirm¢ 4nd the former contains a
unique mdf different from that associated with the latter. In this
(reproducing) case too, we shall obtain a characterization of the mdf leading
to an algorithm for its determination.

In order to arrive at the results just described, it is first necessary
to express the requirement that (1.1) be exact for the degree r in

manageable form as a set of constraints on the basic function L. A

digression for this purpose is the subject of the next section.




3. MAINTENANCE OF DEGREE. Schoenberg noted in (7) that the implications
of exactness of formula (1.1) for the degree r become clearer iIf oconsidered
in relation to a certain weaker condition. Thie weaker condition, in a
modified form, was utjilized by us in (3] and is used again here. Let H bs &
given function with its support ocontained in I, and let & function p and a
function ¢ be related by the formula

gx) = I nix -~ viptvy . (3.1)
Ve o»
This relation may be regarded as a transformation Th that transforms p
into ¢, or
¢ =Typ .
It is evident that T, is a linear operator. W shall say that T,

maintains the degree r if it maps the space 'r into itself, or, in other

words, if p @ “r implies ¢ @ 'r'

An important special case of maintenance of degree is that in which T,
annihilates Nr: in other words, ¢ s identically zero whenever p @ 'r'

Schoenberg in (7] defined a transformation Ty that preserves the
degree r as one having the property that, for every p @ 'r' ¢ is a
polynomial strictly of the same degree as p vwith the same leading
coefficient. He showed that Ty has this property if its characteristic
function (Fourier transform of the basic function H) has the value ' for the
argument 0 and zeros of order r + 1 for all nonvanishing integral multiples
of 2W.

We showed in (3] that if H has an (r ¢+ 1)th derivative in the sense

of distributions, then TH maintains the degree r if and only {f the

convolution of that (r + 1)th derivative with every element of 'r
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vanishes. A more limited result, that can be stated and proved without
introducing distributions, will suftfice here, and is contained in the next
theorem.

If H has a plecewise continuous jth derivative, let bj( denote the
jump of ) 4 xet,

Theorem 3.1, If 'ru maintaing the degree r and (f ¥ 1is plecevise
continuous and has plecewise continuous derivatives of all orders, then, for

all real ¢,

-
I v'by o y=0 e 0tum o0l . (3.2)
Ve v
If H is a plecevise polynomial function with finite support and satisfies
(3.2), then Ty maintains the degree r.

Proof. If we take p(v) = v' an (3.1), the left msember of ().2) is the
jump of d(j’(x) at x = t. But, if T, maintaine the degree r and § o
one of the integers 0,1,...,r, § is a polynomial and this jusp vanishes.
Thus (3.2) is established.

On the other hand, let H Dbe a piecewise polynomial function of finite
support satisfying (3.2), and let p @ 't in (3.1)., Then ¢ and all ite
derivatives are continuous everywhere. But, if & {is the maxiaum degree of
the polynomjial arcs composing H, then d‘d”) vanishes almost everywhere by
(3.1). Since #'9*") {5 continuous everywhere, it is therefore identically
zero. It follows that o @ 'd'

If § denotes the "central-difference” operator defined by

Sf(x) = f(x + Yo) - f(x - Y,

we have also from (3.1)

€ v PUBEEG Bt puw ™




) = J pvis hix - vy
Vo 80

I +1

Expanding 5'*‘H(x = V) {in terms of H(x) values by the well known binomial
formula and rearranging terms gives
5 'gix) - Din(x - V)5‘*‘p(v) R

where the summation i; is over all the integers when r {s odd, and over

all the real numbers of the form integer + 9& when r is even. Note that
the required rearrangement of terms is permissible because the support of H
is finite.

Ir”p(\') -0 for all V. Therefore 8 ' 'g(x) = 0

Now, since p @ 'r' §
for all real x. But, a polynomial whose (r + 1)th derivative vanishes
identically belongs to 'r' Therefore T, maintains the degree r. O

If T maintains the degree r, then there is a differential operator

H
of order not exceeding r, which we shall call the signature of T, and

shall denote by Sy of the forwm

Sy = E '101 R (3.3)
i=0
that is equivalent to T“ over 'r' In other words, SyPp = TyP whenever
p e 't. In (3.3) D denotes differentiation. The following theorem is an
immediate oconsequence of the preceding definitions.
Theorem 3.2. T, is exact for the degree r if and only if it maintains
the degree r and its signature is the identity operator.

We can express s“ in terms of H 1in various ways. Thus, the

coefficients a, of (3.3) are given by

e W L L e L A e o stk il

.

T NP P e ey g




! i
‘ a, = ‘—‘ﬁ— I v (1 = 0,1, 000,7) & (3.4)
‘ ve=r

If H is integrable, we have also

i [
& = (-+1 [ xtuex)ax (1 =0,1,000,x) .
]

b e

If a basic function L satisfies (1.2), then, by (3.4), the

i coefficients a, in the expression (3.3) for Sy are given by

1

: a, = § (1 =0,1,¢00,x) &

‘i i Oi [N ’

' Thus we have established the following oorollary, previously noted in ([3,7].
o Corollary 3.3. The interpolation formula (1.1) is exact for the degree
3 r if it maintains the degree r and is also reproducing.

9

- The existence and properties of the signature S, were established in

[3] (though the term "signature" does not appear there) using the concept of
& <

R distributions. However, what has been stated here is easily verified by
i

; elementary means. A similar remark applies to the following lemma, in which
. i we take
p=r + 1)

,._i 2 .

L.

r?‘ The lemma can be verified by noting (after some algebraic manipulation) that
el the function

A

B o

) +
3 cx) = § N kix-0-19 (3.5) ,

- 3
j=0

f|
i

) has the required properties.
Lemma 3.4. If K is piecewise continuous with its support contained

in 1 and Ty annihilates “r' then there exists a pilecewise continuous

-10-

B
L&
B
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function G with support contained in (a + ¢, 8 - p), such that

e (x) = R(x) (3.6)

for all real x such that the left member is defined.

4. CHARACTERIZATION OF GENERAL mdf's. We note that a formula (1.1) that

is exact for the degree r must satisfy

z viL(x - V) = x
V= -9

i (1‘0,1,...,:) . (4.1)

If the support of L is contained in I, all but a finite number of the
coefficients L(x -~ V) vanish automatically. If U < r + 1, it follows that
there is some interval for x within which each of the r + 1 1linearly
independent functions 1,x,x2,...,xr is expressible as a linear combination
of r or less given functions. This is impossible. Therefore F;.. 1is
empty for U < r + 1.

If M=1r + 1, then for every x such that x - & and x - B are
nonintegers, (4.1) can be regarded as a system of r + 1 1linear equations in
the r + 1 unknown values of L{x - V). Moreover, the determinant of the
matrix of coefficients of the linear system is a Vandermonde, and therefore
nonvanishing. Thus, the system has a unique solution. WNow, it is evident
that the equations are satisfied by the r + 1 fundamental functions of
Lagrange interpolation (or extrapolation) for the function value corresponding
ro the argument x, given those corresponding to the r + 1 arguments V
for which L(x = V) is undetermined. Moreover, each of these fundamental
functions is, indeed, a function of x - Vv, as (4.1) requires.

In this case of U =1r + 1, I, is discontinuous at those arguments x € I

that differ by an integer from @ or 8, except in the special case in which




. @ and 8 are themselves integers and also 0 € I. Only in this special
.é cagse is the formula reproducing and L continuous everywhere.
i ' We conclude from the preceding discussion that the class Firm. is empty
{ for U<r +1, and also for U=r +1 and m> 1, while for u=r + 1
and m =0 or 1, it is either empty or contains a single formula.
For U > r + 1, Fr, . contains an infinite number of formulas for every
: nonnegative number m, and among them, as we shall see, a unique mdf. The

following theorem is the key tu the characterization of this unigue mdf.

"? Theorem 4.1. For any nonnegative integers r and m, and for
g U>rxr + 1, the class Frem contains a single formula whose basic function
3
:j L satisfies the following three conditions:
. (i) L 1is a piecewise polynomial function of degree at least r and at
: most d = max(r,2m - 1). .
) (11) Each knot of L is an argument that differs by an integer from «
k= or B (or both).
v'f {ii1) The piecewise polynomial function 6r+1L is given in
- t (a +p, B~p) by a simple polynomial of degree at most 2m ~ 1.,
; This theorem requires interpretation for m = 0. In that case, we
;gj interpret a polynomial of degree =1 (in condition (iii)) to mean one that is

identically zero.

We shall postpone the proof of this theorem, as it will become easier
after we have developed some further paraphernalia. However, without waiting
to prove it, we shall proceed to demonstrate its connection with the existence
of a unique mdf. For this purpose we shall need the following lemma,

Lemma 4.2. Let K e C ', with k!™ piecewise continuous, have its
support in I, and let Tx annihilate "r' Let H be piecewise continuwous,

with piecewise continuous derivatives of orders 1 to m, let TH maintain
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6r+1

the degree r, and let H be given in (a + p, B = p) by a simple

polynomial of degree at most 2m - 1, Then,

[ ™ ()™ (x)ax = 0 . (4.2)

-t

Proof. By lemma 3.4, there exists a function G e CP", with support in
(a + p, B - p), such that g(m is piecewise continuous and (3.6) holds.
Denoting by © the left member of (4.2), we have . H

o«

o=/ 8™ ™ ax .

e ™ () g expanded in terms of G{M)(x) values, the finite support

of '™ then permits rearrangement of terms, so that

[
o= (-1 [ g™ ()6 My ™y ax .
-0

Since c{™ vanishes outside of (a +p, B - p), and 6r+1ﬂ(m) is given in
that interval by a polynomial of "m (v 8Say q, we have !
= ¢
i
B-p "

o= (- [ g™ gxrax . (4.3)

a+p

as G e A1, m-fola integration by parts now gives 0 = 0, as required. O
Theorem 4.3. The unique interpolation formula determined by Theorem 4.1

is the unique mdf of the class F

L d

Irm

Proof. let L be the basic function of the unigue formula determined by

Theorem 4.1, and Ly the basic function of any formula of Frem® Also let

J and J,; denote the corresponding values of the quantity given by (2.2),




A

-t e
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and let Ky be defined by

Le(x) = L(x) + Kq(x) (4.4)
Then, it is easily verified that K, fulfills the conditions required of X
in Lemma 4.2. Similarly, L fulfills the requirements for H in that

lemma. Therefore, by Lemma 4.2,

f L(“"(x)x;“‘)(x)dx -0 . (4.5)

-

From (4.4) and (4.5) we have

Iy=0+ [ k™ )2ax .
-t

It follows that J < J,. Moreover, equality holds only if K‘“‘) vanishes
almost everywhere. Therefore, in this case, K%“"” is a step function.
But, since K, € -1, Kﬁ“"” is continuous, and therefore Ksm) is

identically zero. It follows that Ky © "m « But a polynomial with finite

-1
support is identically zero, and so Ly =L. a

5. CHARACTERIZATION OF REPRODUCING mdf's. We shall first dispose of the

case in which FIrm and Fggnp‘ are identical. Let t denote the number of

integers contained in 1I.

is nonempty, it is identical to F:P if and

Theorem 5.1. If F Trm

Irm

only if 0 €I and t <r + 1.

Proof. We have seen that F is empty for U < r + 1. Therefore we

Irm

must have U > r + 1. This implies that ¢t > r. In fact, t = r occurs only

when M= r +1 and @ and 8 are integers. By (3.4) and Theorem 3.2,

the r + 1 relations




z \’iL(\’) = 601 (i = 0,15000,!') (5.1)
V= =0
must be satisfied. These may be regarded as a system of linear equations in
the quantities L(V) for the t integers V contained in I. If

t

r + 1, the matrix of coefficients is square. (In the special case of

t

r, one of the end values, a@ or B8, may be included.) The matrix is
also nonsingular, because its determinant is a Vandermonde and therefore
nonvanishing. Thus, the linear system has a unique solution. However, if
0eI, it is evident that the values given by (1.2) are a solution, and
therefore the unique solution. Hence the formula is reproducing and Frem
and FI}P are identical.

As previously pointed out, there is no reproducing formula if 0 & I.
Now, let I be such that t > r + 1, and let f1 be a formula of Prrm® It
follows from Theorem 4.1 that such a formula exists. If f1 is
nonreproducing, the theorem is established. Otherwise, let L1 be the basic
function of f1 and T the largest integer in 1I. Then, for some € in
(0,17/2), [T =xr -1 =€, T +¢€]C I. Now, oonsider the interpolation
formula f, under which, for x in (A - €, X + ¢) for every integer ),

v, = z L1(x - v)yv + ki(x - A + e)m(x -2 =c¢)

m,r+1
x A Y
V=0

Aot ¢ (5.2)

k being arbitrary, while, for all other values of x, v is given by the

X

summation term only. Here A is the usual finite-difference operator.

Evidently fz belongs to Firm® However, (5.2) gives

2m, r+1
vy =y, tk(=0TeTA Ty, o,

and the formula is clearly nonreproducing for k # 0. Q




The analcgue of Theorem 4.1 for the reproducing case is the following
theorem.

Theorem 5.2. For any nonnegative integer r and positive integer =,

and any finite interval I = (a,B) oontaining 0 and such that u > r + 1,

the class F§§g contains a single formula satisfying the following three

il

conditions:
1 (i) L 1is a piecewise polynomial function of degree at least r and at
most q = max(r;zm - 1).

(11) Each knot of L is either an integer or an argument that differs

by an integer from &« or B8 (or both).

6r+1

(iii) The piecewise polynomial function L is given in

(e +p, B~p) by a spline function of degree 2m - 1 with simple knots.

The knots of 6r+1L in (a +p, B - p) are at the integers when r is odd,

and at the arguments of the form integer + 1/2 when r is even.

As in the case of Theorem 4.1, we shall pcstpone the proof of this
theorem, but we shall now show its relationship to reproducing mdf's, for
which the following lemma will be needed.

Lemma 5.3. Let functions K and H satisfy the same hypotheses as in

Gr*‘n is

Lemma 4.2 except that (i) K vanishes at the integers, and (ii)
given in (a +p, B - p) by a spline function of degree 2m - 1 with knots
as specified in condition (iii) of Theorem 5.2. Then (4.2) holds.
Proof. The proof is the same as that of Lemma 4.2 down to equation (4.3)
except that q 1is a spline of degree m - 1 with knots as specified in *

condition (ii), and it follows from the expression (3.5) for G that it

vanishes at the knots of q. Thus m-fold integration of (4.3) gives

m+r +1 (m=1)

g = (=1) L G(x)lq (x+0) - ¢ Vix-0y,
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where the summation is over the knots of q in (a +p, B - p). Since G
vanighes at these knots, O = 0, as required. a

Theorem 5.4. The unique interpolation formula determined by Theorem 5.2
is the unique mdf of the class FI’F.

Proof. The proof is identical to that of Theorem 4.3, except that the

role of Lemma 4.2 there is now assumed by Lemma 5.3. 0

6. COMPACT EXPRESSION FOR mdf BASIC FUNCTIONS. If there is a formula

of Firm with a basic function that satisfies conditions (i) and (ii) of
Theorem 4.1, this basic function can be regarded as a spline function of
degree 4 with multiple knots of multiplicity d - m + 1. In general,

therefore, it has a unique expression (see [2]) of the form

I 1o L L)
L(x) = c,,(x~a=3) +qg,,(x=-8+3) R (6.1)
i=m j=o 13 M *

where n denotes the largest integer contained in u and y}_ = mx(yi,O).

The coefficients iy and gy4 are subject to the constraints arising from

Theorem 3.1, which can be written as

n
(a) X jkcij =0
j=0
(k = 0,1,.00,!’ i"m,m+1,...,d) . (6.2)
n
) 3y =0
=0

If ¥ is an integer, the second term of the summand in (6.1) is absent (as
are, of ocourse, the constraints (6.2)(b)).

For a formula of F?ﬁg that satisfies conditions (i) and (ii) of Theorem

5.2, in general there must be added to the right member of (6.1) the




expression

4 z hj(x - j)ilﬂ'ﬂ ,
jee

where E denotes the set of integers ocontained in I, and the constraints

) jkhj =0 (k = 0,1, 000,r) (6.4)
jee

must be satisfied. However, when @ or B is an integer, the addition of

(6.3) is not required.

i We shall now show that by taking into account condition (iii) of Theorems
E 4.1 and 5.2 and by introducing certain special spline functions, we can
;i rewrite (6.1) in a form involving a much smaller number of undetermined
coefficients and can also avoid the necessity of considering separately the
cases in which u#, &, or B8 is an integer. For this purpose we shall need
- the following lemma.
? Lemma 6.1. For every nonnegative integer r and every positive integer
: n>r + 1, there is a unique polynomial Prn € “r such that
.4% ¥ ok 4y = (k= 0,1,000,7) & (6.5)
3 g1 " ok

- A

Proof. This follows easily from well known properties of orthogonal
polynomials, but it is also readily seen as follows. Equations (6.5) may be
regarded as a system of r + 1 linear equations in the r + 1 ooefficients
of pPrne The latter system has a unique solution if and only if the corre-
sponding homogeneous system has only the trivial solution. But any solution

- of the homogeneous system gives rise to a polynomial P € ﬂt such that

n
) P(Hg(3) =0 (6.6)
=1




4 for all g e 'r' In particular, one may take q = P, so that (6.6) becomes a
sum of squares, and therefore P vanishes for j = 1,2,...,n. Since n > r,
' P 1is identically zero. a

We now define the splines of deqree r,

n
S, (x) = xE - 321 Prn() (x =~ 15,

n
SEn(x) = x5 - 321 Ppn(3)(x + »nE .

Parenthetically, we remark that by means of (6.5) and the identity
yi=y" - (-5

it is easily shown that S2 (x) = (-1)**'s_ (-x). we observe also that s

rn
has its support in (0,n) and S;n in (-n,0).

Note that condition (iii) of Theorem 4.1 or 5.2 implies, in general, that
certain knots that the function 6r+1L would otherwise be expected to have
are absent (or reduced in multiplicity in special cases of a reproducing

formula). Using the notation of (6.1), this means that

Ar+1 = Ar+1
‘13 913
where the finite differences are taken with respect to j, and N is the

=0 (j=1p2'.-o,N"'t-1’ i’m,m"",-a.,d) ’

largest integer less than u. (Note that N differs from n when UM is an
integer.) This implies the existence, for i =m,m + 1,...,d4, of a
polynomial q; such that cij = qi(j) for 3 = 1,2,...,N but not, in

general, for j = 0. Similar remarks apply to 944° We conclude from these

facts and the constraints (6.2) that

EAR r,v'.b:




5 1 4
jzo [egytx = a= L+ g 00 -8+ 3]

= c8E 1 (x - @) + g8{T"1)(x - 8) (6.7)
({1 =m,m + 1,...,4 ,

where ¢, and g, are obtained by multiplying €40 and g, by appropriate
constants depending only on i and r, and, in case { > r, a derivative of
negative order denotes that particular integral of corresponding order that
vanishes identically for x < a, A little reflection will convince the
reader that the right member of (6.7) is a valid substitution even when U is
an integer (and N = U4 - 1), However, in the case of a reproducing formula,
the expression (6.3) now must always be added, even though & or 8 (or
both) is an integer.

Accordingly, (6.1) can be expressed uniquely in the form

*(r=i)
N

(r-1i)

i (x - 8)] . (6.8)

d
L(x) = I [cis

(x - a) + g.8
i
i=m

A function 1 satisfying conditions (i)-(iii) of Theorem 4.1 that is the
basic function of a formula of F;, has, therefore, a unique expression of
the form (6.8). Similarly, a function L satisfying conditions (i)-(iii) of
Theorem 5.2 that is the basic furction of a formula of F§§§ has a unique
expression of the form (6.8) with (6.3) added.

The coefficients cy and 9y (and hj in the reproducing case) must
gatisfy certain constraints. These will now be described.

(a) In the reproducing case the r + 1 conditions (6.4) must be o
satisfied. When this is the case, the expression (6.3) vanishes for x > B.

{b) The function given by (6.8) has its support in I when d=r.

This is also true in the reproducing case if the preceding ocondition (a) is

-20=
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fulfilled. However, wvhen d =2m - 1 > r, (6.8) gives, for x > B8, a
polynomial of degree 4 - r - 1. The vanishing of the d - r ooefficients of
this polynomial involves 4 - r constraints.

(c) 1In the general case, exactness for the degree r requires that i
the r + 1 oonditions (5.1) be satisfied.

{d) In the reproducing case, (c) is replaced by conditions (1.2). This
involves ¢t effective constraints.

(e) The form of (6.8) ensures that 6r*1L shall be given in

(a +#p, 8 ~-9p) by a polynomial in the general case, and by a polynomial

except for discontinuities in the (2m - 1)th derivative in the reproducing
case. However, in the case when d=r > 2m - 1, ocondition (iii) of Theorem
4.1 or 5.2 involves also a reduction in degree from 4 to 2m - 1. This

congstitutes d - 2m + 1 constraints.

7. PROOFS OF THE CHARACTERIZATION THEOREMS. We now have the machinery

needed to prove Theorems 4.1 and 5.2.

Proof of Theorem 4.1. If there is a formula of F, . whose basic |
function satisfies conditions (i)-(iii) of Theorem 4.1, that function has a
unique expression of the form (6.8) with parameters c; and g; satisfying
conditions (b), (c), and (e) of the preceding section, to the extent these
conditions are applicable. On the other hand, if there is an expression of
this form with parameters satisfying these conditions, then it is, in fact,

the basic function of such a formula.

Now, (6.8) ocontains 2(d = m + 1) undetermined parameters. The numbers
of oonstraints involved in conditions (b), (c) and (e) are, respectively,

d~r, r+1 and 4d-2m + 1. (Note that the integers d - r and

d-2m + 1 are not both different from zero.) The total number of




constraints is 2(d - m + 1), the same as the number of parameters. Without
spelling out the constraints in detail, it is easily verified that they are
linear equations in the parameters. The parameters must therefore satisfy
2(d - m + 1) equations in as many unknowns. To prove Theorem 4.1 it {is
sufficient to show that this linear system is nonsingular.

This is the case if the corresponding homogeneous system has only the
trivial solution. In fact, the only one of the constraint equations that has
a number other than 0 on its right-hand sids is the one obtained by taking
1 =0 4in (S.1)« Thus, a function K of the form (6.8) whose parameters
satisfy the homogeneous system has the property that T, annihilates 'r'
This function K therefore fulfills the requirements for both KX and H ({n
Lemma 4.2. Consequently, by lemma 4.2,

J x™®)(x))2ax = 0 .

-]
By the same reasoning used in the proof of Theorem 4.3, it follows that K is
identically zero. Thus, the homogeneous system has only the trivial solution.

Proof of Theorem 5.2. The perceptive reader may have noticed that the

possibility of m = 0, though allowed in Theorem 4.1, is excluded in Theorem
5.2. In fact, a reproducing mdf with m = 0 is somewhat meaningless, for the
following reason. Application to this case of the criteria that we have
developed would lead to a solution in which the basic function of the
corresponding mdf without the reproducing requirement is modified by
arbitrarily assigning at the integers the values given by (1.2), even though

these are inconsistent with the values at neighboring arguments. Thus, the

regsulting basic function would have removable discontinuities at the integers




in I. Strictly speaking, such a function is not piecewise continuous, and
therefore is not the basic function of a formula of the class Frro®

1f there is a formula of P§:g wvhose basic function satisfies conditions
(i)=(iii) of Theorem 5.2, that function has a unique expression of the form
(6.8) with (6.3) added, and the parameters c,, 9y and hj satisfy
conditions (a), (b), (4), and (e) of the preceding section, to the extent
these conditions are applicable. On the other hand, if there is an expression
of this form, with parameters satisfying these conditions, then it is, in
fact, the basic function of such a formula.

Now (6.8) and (6.3) together contain 2(d - m + 1) + t undetermined
parameters. The number of oonstraints involved in conditions (a), (b), (4},
and (e) are respectively, r + 1, d~r, t, and d - 2m + 1. The total
number of constraints {8 2(d - m + 1) + ¢, the same as the number of
parameters. As in the general case, all the constraints are linear equations
in the parameters, and they oconstitute a linear system having a square
coefficient matrix.

The remainder of the proof is the same as for Theorem 4.1, except that

Lemma 5.3 now assumes the role played by Lemma 4.2 in the earlier proof.

8. SOME mdf's ARE PREVIOUSLY PUBLISHED FORMULAS. In some instances the

minimized-derivative formula of a class turns out to be a previously published
formula. Table I lists, for the cases known to us, the class Fxrm or

F1SP  involved, the name of the originator, the publication citation, and the
year of publication. Two of the papers cited ocontain a large number of

formulas, and in these cases the particular formula is identified. In two

instances in which the published formula contains an unspecified parameter,

the numerical value of the parameter that yields the mdf is given in a

St e aar A




are identical for the case involved.

footnote. The entry "Both"™ in the fourth column means that Frrm and F§$£

TABLE I. Previously Published Formulas that are mdf's
Rep or Originator Publication

I Nonrep and Citation Year
(~2, 2) Nonrep Jenkins [5] 1927
(-2, 2) Both Karup (6] 1898
(-2, 2) Both Greville [1] (105) 1944
(=5/2, 5/2) Nonrep Greville (1] (67)2 1944
(-5/2, 5/2) Nonrep Greville [1] (69) 1944
(-3, 3) Nonrep Greville [1] (73)3 1944
(-3, 3) Nonrep Vaughan [10] "C* 1946
(-3, 3) Rep Henderson [4] 1906
(-3, 3) Both Shovelton [8) 1913
(-3, 3) Both Sprague [9) 1880

2
with a4 = 13/80.

3
with a5y = -7/108.
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